High Order Integrator for Sampling the Invariant Distribution of a Class of Parabolic Stochastic PDEs with Additive Space-Time Noise
نویسندگان
چکیده
We introduce a time-integrator to sample with high order of accuracy the invariant distribution for a class of semilinear SPDEs driven by an additive space-time noise. Combined with a postprocessor, the new method is a modification with negligible overhead of the standard linearized implicit Euler-Maruyama method. We first provide an analysis of the integrator when applied for SDEs (finite dimension), where we prove that the method has order 2 for the approximation of the invariant distribution, instead of 1. We then perform a stability analysis of the integrator in the semilinear SPDE context, and we prove in a linear case that a higher order of convergence is achieved. Numerical experiments, including the semilinear heat equation driven by space-time white noise, confirm the theoretical findings and illustrate the efficiency of the approach.
منابع مشابه
Approximation of the invariant measure with an Euler scheme for Stochastic PDE's driven by Space-Time White Noise
In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing with exponenti...
متن کاملPostprocessing for Stochastic Parabolic Partial Differential Equations
We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce post-processing in the context of a standard Galerkin approximation, although other spatial discretizations are possible. In time, we follow [20] and use an exponential integrator. We prove strong error estimates and discuss the best number of postprocessing terms to ...
متن کاملFully-discrete Finite Element Approximations for a Fourth-order Linear Stochastic Parabolic Equation with Additive Space-time White Noise Ii. 2d and 3d Case
We consider an initialand Dirichlet boundaryvalue problem for a fourth-order linear stochastic parabolic equation, in two or three space dimensions, forced by an additive space-time white noise. Discretizing the space-time white noise a modeling error is introduced and a regularized fourthorder linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the...
متن کاملStochastic PDEs with multiscale structure
We study the spatial homogenisation of parabolic linear stochastic PDEs exhibiting a two-scale structure both at the level of the linear operator and at the level of the Gaussian driving noise. We show that in some cases, in particular when the forcing is given by space-time white noise, it may happen that the homogenised SPDE is not what one would expect from existing results for PDEs with mor...
متن کاملA Theory of Hypoellipticity and Unique Ergodicity for Semilinear Stochastic PDEs
We present a theory of hypoellipticity and unique ergodicity for semilinear parabolic stochastic PDEs with “polynomial” nonlinearities and additive noise, considered as abstract evolution equations in some Hilbert space. It is shown that if Hörmander’s bracket condition holds at every point of this Hilbert space, then a lower bound on the Malliavin covariance operator Mt can be obtained. Inform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2016